Subatomic (Particle) Physics in Canada

- The Canadian particle physics community
- Our subatomic physics facilities
- Our particle physics program
- Connections with the international community

William Trischuk Director, IPP University of Toronto October 11, 2012

The Canadian Particle Physics Community

- 200 researchers from 25 Canadian institutions
- 15 institutional members of the IPP:

Alberta, Carleton, Laurentian, McGill, Montreal, Perimeter, Queens, Regina, Simon Fraser, Toronto, TRIUMF, UBC, Victoria, Western, York

- Our community consists of
 - 125 experimentalists (ATLAS, T2K, SNOLAB, smaller experiments)
 - 75 theorists (phenomenology, string theory, formal theory)

TRIUMF

- National lab for subatomic physics
- Canada's steward for accelerator physics
- Operates world's largest cyclotron and suite of post-production radioactive beam accelerators
- Have a growing SRF group
 - Building a 1.3 GHz electron linac
 - First phase completed in 2013
 - Exploring ILC and CERN/SPL contributions
- Hosts Canada's LCG Tier1 centre
- Detector expertise (BaBar, ATLAS, T2K)

Funded in five-year cycles, now secure through 2015

TRIUMF

- National lab for subatomic physics
- Canada's steward for accelerator physics
- Operates world's largest cyclotron and suite of post-production radioactive beam accelerators
- Have a growing SRF group
 - Building a 1.3 GHz electron linac
 - First phase completed in 2013
 - Exploring ILC and CERN/SPL contributions
- Hosts Canada's LCG Tier1 centre
- Detector expertise (BaBar, ATLAS, T2K)

Funded in five-year cycles, now secure through 2015

SNOLAB

- Initial home of SNO experiment
- Cleanroom conditions, at -2000 m
- Expanded lab facilities over the last five years
 - 3-fold increase in volume
 - 4-fold increase in floor space
- Dark matter searches

- PICASSO liquid droplet dark matter search *
- COUPP small scale bubble-chamber detector
- SuperCDMS using solid state detectors
- Neutrino-less double beta decay searches
 - SNO+ with Nd-loaded liquid scintillator $\ref{eq:snorm}$
 - EXO using gaseous Xenon ♥
- Supernova searches
 - − HALO using Lead and SNO neutral current detectors

SNOLAB

- Initial home of SNO experiment
- Cleanroom conditions, at -2000 m
- Expanded lab facilities over the last five years
 - 3-fold increase in volume
 - 4-fold increase in floor space
- Dark matter searches

- PICASSO liquid droplet dark matter search **
- COUPP small scale bubble-chamber detector
- SuperCDMS using solid state detectors
- Neutrino-less double beta decay searches
 - SNO+ with Nd-loaded liquid scintillator $\ref{eq:snorm}$
 - EX○ using gaseous Xenon **
- Supernova searches
 - HALO using Lead and SNO neutral current detectors

Defining the Canadian Particle Physics Program

- Build a community consensus around projects that:
 - Have potential to answer crucial particle physics question(s);
 - 1. Involve a diverse group of Canadian particle physics researchers;
 - Have financial support for development/construction/operation or exploitation of a 'full experiment' from Canadian funding agency, not just R&D money;
 - 3. Be a fully approved part of the experimental programme at the host lab or in the host country;
 - 4. Complement existing parts of the Canadian program. Our community is sufficiently small that we are better served by focused efforts on one experiment in each field/area/accelerator.

The Current Canadian Program

	Data-taking		Investigators
Experiment	Start	End	(FTE)
ATLAS	2009	2025+	43 (39)
BaBar	2000	2008	10 (4)
CDF	1992	2011	5 (1)
DEAP	2013	2017+	13 (8)
EXO-200	2011	2013?	6 (4)
$\pi \to e$	2009	2012	4 (2)
PICASSO	2004	2014+	7 (4)
SNO+	2013	2017+	15 (9)
T2K	2009	2015+	19 (15)
VERITAS	2007	2015+	2 (2)

- Is this program serving the community?
 - Yes, \approx 90 experimental FTEs (125 experimental faculty)
- We are in the final stages of transition from

Canadian Subatomic Physics Long Range Plans

Perspectives on Subatomic Physics in Canada 2006-2016

> REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

The Subatomic Universe: Canada in the Age of Discovery

Report of the Natural Sciences and Engineerin Research Council of Canada (NSERC) Long-Range Planning Committee

L'univers subatomique : le Canada à l'âge de la découverte

Rapport du Comité de planification à long terme du CRSNO

Overview of Particle Physics in Canada

- ATLAS: Explore the energy frontier at the LHC
 - Operations underway, fully engaged in physics, planning upgrades
 - 40 faculty and 100 postdocs/students maintaining detector and studying the data (25 PhD thesis completed)
- SNOLAB: Infrastructure complete
 - SNO+ and DEAP/CLEAN nearing completion
 - First measurements in the next few years
- T2K: θ_{13} measured, working on systematics
 - Canadian detector contributions working well after earthquake
 - Leading physics studies, low energy systematic checks at TRIUMF
- Future: Active in sLHC and ILC studies
 - TRIUMF developing SRF expertise (electron isotope facility)
 - Canadians prepared to contribute strongly to future HEP projects

ATLAS

- 5-7% of ATLAS collaboration
- Incredible start to data-taking
 - More than 20 fb $^{-1}$ of data now
 - Higgs discovery is only first step
 - Canadians active in all areas
 - Tier1 centre(s) critical to reprocessings
- ATLAS (and ATLAS-Canada) ready to exploit expanding datasets
- TRIUMF collaborating on sLHC injectors
- Canadians leading ATLAS upgrade R&D

 ATLAS-Canada continues to grow (1/2 of eHEP faculty hired in Canada since 2000)

Major commitment of 1/3 of the Canadian experimental community

T2K

- Canadians were the first foreign partners to sign original proposal
 - Off-axis beam concept invented in Canada
- Made major contributions to ND280
 - FGD, TPC now operational at J-PARC

November 2008

- OTR monitoring ν -beamline
- Canadians leading ND280 physics program
- A subset now members of SuperK improving far detector reconstruction
- Reducing systematics with cross-section measurements at TRIUMF

- T2K-Canada group:
 - 19 Faculty/scientists and 25 students/postdocs
- Canadian group as big as Japanese, US, UK and EU groups on T2K

T2K

- Canadians were the first foreign partners to sign original proposal
 - Off-axis beam concept invented in Canada
- Made major contributions to ND280
 - FGD, TPC now operational at J-PARC

- OTR monitoring ν -beamline
- Canadians leading ND280 physics program
- A subset now members of SuperK improving far detector reconstruction
- Reducing systematics with cross-section measurements at TRIUMF

- T2K-Canada group:
 - 19 Faculty/scientists and 25 students/postdocs
- Canadian group as big as Japanese, US, UK and EU groups on T2K

DEAP

• DEAP uses delayed signal in Liquid Argon to distinguish dark matter

candidates from e/γ backgrounds

7 kg prototype is operating at SNOLAB

 3 · 10⁻⁸ photon rejection demonstrated (goal 10⁻⁹)

- Seeing radon on surface of acrylic vessel
- Now working to improve cleanliness of surfaces and purity of detector elements

- Construction of full size DEAP-3600 well underway
- Working closely with CLEAN, a US-led collaboration that will also use liquid Neon target
- Both should be taking data by 2014

DEAP

DEAP uses delayed signal in Liquid Argon to distinguish dark matter

candidates from e/γ backgrounds

7 kg prototype is operating at SNOLAB

- 3 · 10⁻⁸ photon rejection demonstrated (goal 10⁻⁹)
- Seeing radon on surface of acrylic vessel
- Now working to improve cleanliness of surfaces and purity of detector elements

- Working closely with CLEAN, a US-led collaboration that will also use liquid Neon target
- Both should be taking data by 2014

SNO+

- 150Nd loaded liquid scintillator to search for neutrinoless double beta decay
- Significant engineering completed to hold-down buoyant acrylic vessel
- Have demonstrated transparency of 0.1% Nd suspension in scintillator
- Investigating isotope separation to increase active target mass without compromising transparency

- Signal from 2 years running (natural Nd)
- Construction well-underway. Expect first data-taking in 2014

SNO+

- 150Nd loaded liquid scintillator to search for neutrinoless double beta decay
- Significant engineering completed to hold-down buoyant acrylic vessel
- Have demonstrated transparency of 0.1% Nd suspension in scintillator
- Investigating isotope separation to increase active target mass without compromising transparency

Construction well-underway. Expect first data-taking in 2014

PICASSO

- Dark matter one of the compelling mysteries
- Search with super-heated droplet technology
- Low activity detector materials are key
- PICASSO steadily increasing mass
- 2.6 kg mass now in SNOLAB ladder labs
- New electronics exploits time-correlation significantly improving alpha/WIMP discrimination
- At the forefront establishing world's best spindependent limits

- Refreshing target modules as cleaner materials become available
- Cooperating with COUPP (Chicago/Fermilab) on next generation

The Future of the Canadian Programme

	Time	eline	
Experiment	Start	End	Investigators
ATLAS	2009	2025++	40
T2K	2009	2015+	20
PICASSO/COUPP	2006	2013+	10
SNO+	2013	2015+	15
DEAP/CLEAN	2013	2015+	10
SuperB	2017 (?)	2025	10
Linear Collider,	2020+	_	20-30+

- ATLAS is centre-piece of collider physics in Canada
- Converging on SNOLAB experimental programme
- Build future neutrino program on T2K contributions
- Possible involvement in SuperB
- Establish foundation for commitment to next collider

North American Cooperation in Particle Physics

- Important Canadian contributions to BaBar and CDF
- Natural geographic partners
- Began discussing North American cooperation on high energy physics at FALC meetings 3-4 years ago
- Have had a series meetings with Canadian proponents
 - Community: TRIUMF, SNOLAB, Perimeter, IPP
 - Agencies: NRC, NSERC, CFI, Industry ministry
- Suggested a list of possible topics of common interest:
 - SNOLAB/SUSEL experiments and R&D
 - Next generation long baseline neutrino experiments
 - Building a joint position on CERN relations
 - ILC development and SRF R&D
 - Facilitating movement of researchers among North American labs

Cooperation with Japan

- Natural trans-pacific ties between TRIUMF and Japanese labs
- Build on serendipitous cooperation with systematic contributions
 - T2K is a prime example of this
 - TRIUMF/RIKEN signed MOU
- Annual Canada/Japan (TRIUMF/KEK) symposia for the last 5 years
 - July 2009 at Canadian embassy
 - In conjunction with JPARC opening

Japan Particle Accelerator Science Symposium

Japan - Canada Collaboration and Internationalization in Particle Accelerator Science

July 7, 2009

Hosted by Co-hosted by Embassy of Canada in Japan National Laboratory for

Particle and Nuclear Physics (TRIUMF)

Institute of Particle Physics (IPP)
In Cooperation with High Energy Accelerator Research Organization

(KEK)

Cooperation with CERN

- Canadians were 20% of the OPAL collaboration
- Among the first to commit to an LHC machine contribution (1995)
- Have a strong contingent on ATLAS
- Established Canadian participation in CERN summer student programme
- Canadian participants in CERN summer high school teacher program
- Contributions to LHC/ATLAS are highly visible in Canada
- Developing an industrial forum with potential to be CERN suppliers
 - Looking for projects that match our expertise in LHC upgrade path
- Some engagement at political level Associate Member discussions

Summary

- Canadian particle physicists have had a major impact on the physics of BaBar, CDF, SNO, ZEUS – our recently completed projects
- Starting to see the fruits of our investments in ATLAS, T2K and PICASSO
- A number of projects are on the horizon
 - Launch of the scientific program at SNOLAB:
 - * DEAP/CLEAN and SNO+
 - Working to understand what's next on the Energy Frontier
- Significant community renewal going smoothly
 - Half of the particle physics faculty hired in the last ten years
- TRIUMF now formulating its next five year funding request
- Challenge: 30-40% increase in research activity while operating funding has remained constant